1/13

Instalación cabina iscsi Dell Equallogic 6010XV con Vmware Vsphere

La cabina iscsi está conectada a dos switch powerconnect 8024F dedicados en exclusiva para el tráfico ISCSI, conectados estos a su vez a dos servidores vsphere .

La configuración que aparece en estas páginas es sólo para Vsphere y no es compatible con la versión ESX 3.5, ya que con la Vsphere se ha reescrito por completo el driver para ISCSI para conseguir mejor rendimiento y multipath.

Consideraciones Generales

A la hora de planificar una instalación ISCSI lo primero que tenemos que hacer es decidir como vamos a dividir el espacio de la SAN:

Dos opciones:

- 1. Un sólo volumen
- 2. Varios volúmenes

Un sólo volumen

- Tener todo el espacio en un sólo volumen nos permite más flexibilidad a la hora de redimensionar, crear o hacer snapshots de máquinas virtuales
- Menor complejidad de administración

Varios volúmenes

- Tener distintos tipos de Raid para distintas máquinas
- Más flexibilidad (Las políticas de multiplath y almacenamiento son por LUN)

Grupos

Segmentar la SAN en grupos lógicos por ejemplo

- Grupo A: pro
- Grupo B: pre
- GRUPO c: plantillas
- GRUPO D: Backup

Requisitos de cada grupo

Elegir el tipo de rendimiento y RAID en función de los requisitos de cada grupo

Conexión de la cabina con los switch

La primera es una conexión simple, la segunda es con Multiplath

LUN

Hay que tener en cuenta

- Cada LUN debe tener el nivel de RAID apropiado a las características de la máquina virtual.
- Una LUN sólo debe contener un volumen VMFS
- Si múltiples máquinas virtuales acceden a la misma LUN usar distintas prioridades para cada máquina

Métodos de acceso a los datos en la SAN

Las máquinas virtuales usan dos métodos para acceder a los datos

1. VMFS Las operaciones sobre el VMFS son trasladadas por el ISCSI

2. RDM Da acceso al Sistema Operativo invitado al dispositivo Raw

Configuración de los switch Powerconnect

Como estos switch se van a utilizar específicamente para el tráfico ISCSI cambiamos los siguientes parámetros

- Habilitar Flow Control en todas las bocas
- Habilitar Jumbo frames en todas las bocas
- PortFast
- No usar Sapnning-Tree (STP) usar rstp
- Deshabilitar LLDP (Link Layer Discovery Protocol)

Switches and VLAN1

La recomendación es crear una nueva VLAN y poner todos los puertos usados para el ISCSI en dicha VLAN. En este caso como los switch están dedicados en exclusiva para el ISCSI utilizaremos la VLAN por defecto

Habilitar Jumbo Frame

interface range ethernet all
mtu 9216
exit

deshabilita LLDP

interface range ethernet all
no lldp transmit
no lldp receive

Habilitar el RSTP

Switch(config)# spanning-tree mode rstp

5/13

Habilitar el portfast

interface range ethernet all
spanning-tree portfast

ISCSI

Como el único tráfico que soportan estos switch es el ISCSI podemos quitar los parámetros para priorizar el tráfico ISCSI ya que estan dedicados en exclusiva para el tráfico ISCSI

console(config)# no iscsi enable console(config)# no iscsi target port 860 console(config)# no iscsi target port 3260

STORM CONTROL

interface range Eternet all
no storm-control unicast

Ejemplo configuración Switch Powerconnect

```
console> enable
console# configure
console(config)# spanning-tree mode rstp
console(config)# flowcontrol
This operation may take a few minutes.
Management interfaces will not be available during this time.
Are you sure you want to continue? (y/n) y
console(config)# interface range ethernet all
console(config-if)# no lldp transmit
console(config-if)# no lldp receive
console(config-if)# mtu 9216
console(config-if)# spanning-tree portfast
console(config-if)#no storm-control unicast
console(config-if)# exit
console (config)# exit
console# copy r s
```

En nuestro caso como tenemos los dos switch conectados entre si por las dos últimas bocas

necesitamos además crear un LAG con dichas bocas.

console# configure console(config-if)# interface range ethernet 1/xg20-1/xg24 seleccionamos los últimos puertos para interconectar los switch console(config-if)# channel-group 1 mode auto (añade estos puertos al LGA1, y usamos el protocolo LACP para su configuración) console(config-if)# int range port-channel 1 console(config-if)# no spanning-tree disable

Estas líneas han de ser ejecutadas en los dos switch

Configuración de los ESX con multipath

Vamos a utilizar un ejemplo, supongamos que tenemos un servidor ESX con cuatro interfaces, dos switch dedicados para el iscsi y una SAN con doble interface

- dos interfaces la ponemos en team y los utilizamos para la consola y el VM Network
- los otras dos los utilizamos para el iscsi

note

En esta configuración vamos a habilitar **jumbo frames**, para que esto sea efectivo la configuración de los jumbo frames tiene que ser habilitada en todos los puntos del camino, es decir, end-to-end.

1.- Habilitamos Jumbo Frames en los vSwitch

Creamos un vSwitch para ello desde la consola o por ssh ejecutamos

```
esxcfg-vswitch -a vSwitch1
```

Habilitamos Jumbo Frames

[root@ord1309 ~]# esxcfg-vswitch -m 9000 vSwitch1

Comprobamos que está habilitado

[root@ord1309 -	~]# esxo	cfg-vswit	ch -l					
Switch Name	Num Poi	rts Use	d Ports	Con	figured H	Ports	MTU	Uplinks
vSwitch0	32	6		32			1500	
vmnic0,vmnic1								
PortGroup Nar	ne	VLAN ID	Used P	orts	Uplinks			
VM Network		0	2		vmnic0,	vmnic1		

2025/07/08 09:36	7/13			Instalación cabina iscsi Dell Eq	uallogic 6010X\	/ con Vmware Vsphere
Service Cons	sole	0	1	vmnic0,vmnic1		
Switch Name vSwitch1	Num Po 64	orts	Used Ports 3	Configured Ports 64	MTU 9000	Uplinks vmnic2
PortGroup Na iscsil	ame	VLAN 0	ID Used Po 1	rts Uplinks vmnic2		
Switch Name vSwitch2	Num Po 64	orts	Used Ports 3	Configured Ports 64	MTU 9000	Uplinks vmnic3
PortGroup Na iscsi2	ame	VLAN 0	ID Used Po	rts Uplinks vmnic3		

También podemos hacer

vmkping -s 9000 dirección_ip

para comprobar que funciona

2.- Añadimos los puertos ISCSI VMkernel

Según Vmware en entornos a 10 GB con dos tarjetas hay que crear 3 puertos VMkernel por cada tarjeta física, lo que hace un total de 6 sesiones a la SAN La recomendación ha cambiado, ahora se recomienda un VMkernel por cada tarjeta física

```
esxcfg-vswitch -A ISCSI1 vSwitch1
esxcfg-vmknic -a -i 172.17.1.2 -n 255.255.255.0 -m 9000 ISCSI1
esxcfg-vswitch -A ISCSI2 vSwitch1
esxcfg-vmknic -a -i 172.17.1.3 -n 255.255.255.0 -m 9000 ISCSI2
esxcfg-vswitch -A ISCSI3 vSwitch1
esxcfg-vmknic -a -i 172.17.1.4 -n 255.255.255.0 -m 9000 ISCSI3
esxcfg-vswitch -A ISCSI4 vSwitch1
esxcfg-vmknic -a -i 172.17.1.5 -n 255.255.255.0 -m 9000 ISCSI4
esxcfg-vswitch -A ISCSI5 vSwitch1
esxcfg-vmknic -a -i 172.17.1.6 -n 255.255.255.0 -m 9000 ISCSI5
esxcfg-vswitch -A ISCSI6 vSwitch1
esxcfg-vmknic -a -i 172.17.1.7 -n 255.255.255.0 -m 9000 ISCSI6
```

3.- Asignar las tarjetas de red

Para listar las tarjetas del sistema ejecutar

esxcfg-nics -l

El resultado será algo así

[root@ord1309 ~]# esxcfg-nics -l

Last update: 2023/01/18 13:49 almacenamiento:cabina_iscsi https://intrusos.info/doku.php?id=almacenamiento:cabina_iscsi&rev=1384166743

PCI Link Speed Duplex MAC Address Name Driver MTU Description vmnic0 03:00.00 bnx2 00:22:19:91:39:83 1500 Up 1000Mbps Full Broadcom Corporation Broadcom NetXtreme II BCM5708 1000Base-T vmnic1 07:00.00 bnx2 Down OMbps Half 00:22:19:91:39:85 1500 Broadcom Corporation Broadcom NetXtreme II BCM5708 1000Base-T vmnic2 0c:00.00 ixgbe 10000Mbps Full 00:1b:21:51:34:7b 9000 Up Intel Corporation 82598EB 10 Gigabit AT Dual Port Network Connection vmnic3 0c:00.01 ixqbe 10000Mbps Full 00:1b:21:51:34:7a 9000 Up Intel Corporation 82598EB 10 Gigabit AT Dual Port Network Connection

Asignamos las tarjetas al vSwitch

esxcfg-vswitch -L vmnic2 vSwitch1
esxcfg-vswitch -L vmnic3 vSwitch1

Para verificar que se han asignado correctamente

esxcfg-vswitch -l

el resultado será parecido a

Switch Name vSwitch0 vmnic0,vmnic1	Num 32	Ports	Useo 6	d Ports	Cont 32	figured Ports	MTU 1500	Uplinks
PortGroup Nar VM Network Service Conso	ne ole	VLAN 0 0	ID	Used Por 2 1	rts	Uplinks vmnic0,vmnic1 vmnic0,vmnic1		
Switch Name vSwitch1 vmnic2,vmnic3	Num 64	Ports	Useo 9	d Ports	Cont 64	figured Ports	MTU 9000	Uplinks
			тр		- - -	lla1dalea		
PortGroup Nar	ne	VLAN	TD	Used Poi	τs	Uplinks		
ISCS16		Θ		1		vmnic2,vmnic3		
ISCSI5		0		1		vmnic2,vmnic3		
ISCSI4		0		1		vmnic2,vmnic3		
ISCSI3		0		1		vmnic2,vmnic3		
ISCSI2		0		1		vmnic2,vmnic3		
ISCSI1		0		1		vmnic2,vmnic3		

4.- Asociar los puertos VMkernel con los Adaptadores Físicos

Necesitamos enlazar cada VMkernel a una tarjeta de red. Esto se neecsita para sacar provecho de las nuevas características como Round Robin MPIO etc.

Antes vimos que cada puerto VMkernel tiene dos vmnics en cada uplink. Esto hay que cambiarlo para

que quede una sola vmnic este enlazada y hacer nosotros el balanceo de carga entre todos los puerto VMkernel.

Para usar los iniciadosres ISCSI es obligatorio dejar una sóla tarjeta como activa, poniendo el resto (en caso de tener varias), como **unavailable**. Ojo tampoco ponerla como standby

PortGroup N	ame	VLAN ID	Used Ports	Uplinks
ISCSI6		Θ	1	<pre>vmnic2,vmnic3</pre>
ISCSI5		0	1	<pre>vmnic2,vmnic3</pre>
ISCSI4		0	1	<pre>vmnic2,vmnic3</pre>
ISCSI3		0	1	<pre>vmnic2,vmnic3</pre>
ISCSI2		0	1	<pre>vmnic2,vmnic3</pre>
ISCSI1		0	1	<pre>vmnic2,vmnic3</pre>

Para quitar una de las vmnic ejecutamos lo siguiente

esxcfg-vswitch -p ISCSI1 -N vmnic3 vSwitch1

Seguimos el mismo proceso para los restantes VMkernel

```
[root@ord1309 ~]# esxcfg-vswitch -p ISCS12 -N vmnic3 vSwitch1
[root@ord1309 ~]# esxcfg-vswitch -p ISCS13 -N vmnic3 vSwitch1
[root@ord1309 ~]# esxcfg-vswitch -p ISCS14 -N vmnic2 vSwitch1
[root@ord1309 ~]# esxcfg-vswitch -p ISCS15 -N vmnic2 vSwitch1
[root@ord1309 ~]# esxcfg-vswitch -p ISCS16 -N vmnic2 vSwitch1
```

Verificamos que sólo tenemos una tarjeta por uplink

Switch Name vSwitch1 vmnic2,vmnic3	Num F 64	Ports	Used 9	Ports	Cont 64	figured	Ports	MTU 9000	Uplinks
PortGroup Nar ISCSI6	ne	VLAN 0	ID	Used Por 1	rts	Uplinks vmnic3	5		
ISCSI5		0		1		vmnic3			
ISCSI4		0		1		vmnic3			
ISCSI3		0		1		vmnic2			
ISCSI2		0		1		vmnic2			
ISCSI1		0		1		vmnic2			

Es importante darse cuenta de que mientras en la sección de uplink sólo hay una tarjeta asignada a cada ISCSI VMkernel, todos ellos se distribuyen uniformemente entre todas las tarjetas.

5.- Habilitar el iniciador ISCSI de VMware

para habilitar el iniciador

esxcfg-swiscsi -e

para comprobar que se ha iniciado

esxcfg-swiscsi -q

6.- Enlazar los puertos VMkernel al iniciador ISCSI

para que haga un escaneo para descubrir todos los adaptadores, lo podemos hacer desde el vCenter Configuration→Storage Adapters pulsar en la opción de Rescan... o bien ejecutar

esxcfg-scsidevs -a

El resultado será parecido a

vmhba33 iscsi_vmk	link-n/a	iqn.1998-01.com.vmware:ord1309-49c33378
() Software iSCSI		

La siguiente información que necesitamos es el vmk# de cada puerto VMkernel. Para verlo desde la consola gráfica hay que ir Configuration→Networking. Desde el vSwitch podemos ver cada VMkernel y el vmk# asociado Desde la cosnola podemos ejecutar

esxcfg-vmknic -l

[root@ord13	309 ~]	# esxcfg-vmknid	: -l				
Interface	Port	Group/DVPort	IP Family	IP Addres	SS		
Netmask		Broadcast	MAC Addre	ess	MTU	TSO MSS	Enabled
Туре							
vmk0	ISCS	[1	IPv4	172.17.1	.2		
255.255.255	5.0	172.17.1.255	00:50:56	:75:e9:39	9000	65535	true
STATIC							
vmk1	ISCS	[2	IPv4	172.17.1	.3		
255.255.255	5.0	172.17.1.255	00:50:56	:75:12:6d	9000	65535	true
STATIC							
vmk2	ISCS	[3	IPv4	172.17.1	.4		
255.255.255	5.0	172.17.1.255	00:50:56	:75:10:b2	9000	65535	true
STATIC							
vmk3	ISCS	[4	IPv4	172.17.1	.5		
255.255.255	5.0	172.17.1.255	00:50:56	:75:1a:6c	9000	65535	true
STATIC							
vmk4	ISCS	[5	IPv4	172.17.1	.6		
255.255.255	5.0	172.17.1.255	00:50:56	:75:d0:94	9000	65535	true
STATIC							
vmk5	ISCS	[6	IPv4	172.17.1	.7		

https://intrusos.info/

2025/07/08 09:36	11/13	Instalación cabina iscsi Dell Equ	uallogic 6010XV c	on Vmware Vsphere
255.255.255.0 STATIC	172.17.1.255	00:50:56:78:79:54 9000	65535	true

Ahora que sabemos la vnhba# y el vmk# podemos enlazar cada puerto VMkernel con el iniciador ISCSI

esxcli swiscsi nic add -n vmk0 -d vmhba33 esxcli swiscsi nic add -n vmk1 -d vmhba33 esxcli swiscsi nic add -n vmk2 -d vmhba33 esxcli swiscsi nic add -n vmk3 -d vmhba33 esxcli swiscsi nic add -n vmk4 -d vmhba33 esxcli swiscsi nic add -n vmk5 -d vmhba33

Para verificar

esxcli swiscsi nic list -d vmhba33

7.- Creamos los volúmenes en la cabina Equallogic

Una vez que hemos configurado el iniciador tenemos que crear en la cabina los distintos volúmenes de datos y asignarlos.

A la hora de configurar el espacio para los snapshots de la cabina basta con reservar un 20 o 30%

Permitimos el acceso sólo a nuestra red ISCSI

Habilitamos el acceso compartido desde múltiples iniciadores.

et access type for volume vol	Imv1309:
Permission	
Set read-write	O Set read-only
Shared access Allow simultaneous conr Allow only if your environment c the target.	nections from initiators with different IQN names an safely handle multiple initiators accessing
[🖋 OK 💥 Cancel

Esta opción es necesaria para habilitar todas la capacidades avanzadas del Vsphere con el almacenamiento compartido

8.- Enlazamos los volúmenes al Vsphere

Una vez creados los volúmenes etc, hay que ir al vCenter **Configuration→ Storage Adapter →** hacer click en **Properties** Click en la pestaña **Dynamic Discovery** →Añadir

En la venta que se abre poner la dirección IP de la SAN y pulsar en ok

9.- Activamos el Round Robin

Al activar el Round Robin nos permite hacer uso de las características avanzadas de las cabinas, permitiendo mayores anchos de banda.

Para habilitar el Multiplathing Round Robin en un volumen, hay que ir al vcenter→ Configure→ Storage. clic derecho y seleccionar **Manage Paths**. Desplegar la ventana y seleccionar Round Robin (VMware)

Esto hay que hacerlo para cada volumen nuevo o existente

Para poner por defecto Round Robin y utilizar por defecto el NMP de equallogic a la hora de crear nuevos volúmenes ejecutar:

```
esxcli nmp satp setdefaultpsp --satp VMW_SATP_DEFAULT_AA --psp VMW_PSP_RR
esxcli nmp satp setdefaultpsp --satp VMW_SATP_EQL --psp VMW_PSP_RR
esxcli corestorage claimrule load
```

esxcli corestorage claimrule run

Referencias

- http://www.equallogic.com/WorkArea/downloadasset.aspx?id=8453
- http://communities.vmware.com/message/1186817#1186817
- http://www.cisco.com/en/US/prod/collateral/switches/ps5718/ps6021/white_paper_c11-540141.h tml
- http://www.delltechcenter.com/page/Configuring+a+PowerConnect+5424+or+5448+Switch+for+use+with+an+iSCSI+storage+system
- http://virtualgeek.typepad.com/virtual_geek/2009/09/a-multivendor-post-on-using-iscsi-with-vm ware-vsphere.html
- http://www.delltechcenter.com/page/A+"Multivendor+Post"+on+using+iSCSI+with+VMware+v Sphere
- http://blogs.kraftkennedy.com/index.php/2010/05/07/set-round-robin-mpio-as-default-for-vspher e-4equallogic-sans/

From: https://intrusos.info/ - **LCWIKI**

Permanent link: https://intrusos.info/doku.php?id=almacenamiento:cabina_iscsi&rev=1384166743

Last update: 2023/01/18 13:49