cloud, nube, temperatura, esp8266

2 Temperatura y Humedad en la nube

Una vez que hemos visto como montar nuestro propio servidor web, vamos a ver ahora como hacerlo directamente desde un servidor en la nube.

En primer lugar vamos a usar la plataforma http://dweet.io, en la cual no hay que registrarse para usarla, basta con crear un nombre de dispositivo único para llamar a la HAPI

```
// wiki.intrusos.info
// Librerias
#include "ESP8266WiFi.h"
#include "DHT.h"
// Parámetros de Conexión a la WiFi
const char* ssid = "miredwifi";
const char* password = "miclave";
// Pin del ESP8266 al que está conectado.
// El GPIO 4 corresponde al D2 del ESP8266-12E NodeMCU v3
#define DHTPIN 4
// tipo de sensor DHT
#define DHTTYPE DHT11
                      // DHT 11
// Inicializa el sensor
DHT dht(DHTPIN, DHTTYPE);
// Host al que nos vamos a conectar
const char* host = "dweet.io";
void setup() {
  Serial.begin(115200);
 delay(100);
 // Inicializamos el sensor
 dht.begin();
 // Conectamod a la red WIFI
 Serial.println();
 Serial.println();
 Serial.print("Conectando con la red WIFI ");
 Serial.println(ssid);
 WiFi.begin(ssid, password);
 while (WiFi.status() != WL CONNECTED) {
    delay(500);
```

```
Serial.print(".");
  }
 Serial.println("");
 Serial.println("Conectado a la WiFi");
 Serial.println("Dirección IP: ");
 Serial.println(WiFi.localIP());
}
void loop() {
 // Usa la clase WiFiClient para crear una conexión TCP
 WiFiClient client;
  const int httpPort = 80;
  if (!client.connect(host, httpPort)) {
   Serial.println("Error de Conexión");
   return;
 }
 // Obtiene la Humedad
 float h = dht.readHumidity();
 // Obtiene la Temperatura en Celsius
 float t = dht.readTemperature();
 delay(3000); //retardo para que no de fallo de lectura del sensor
 // Control de errores, valida que se obtuvieron valores para los datos
medidos
  if (isnan(h) || isnan(t)) {
   Serial.println("Falla al leer el sensor DHT!");
   client.print("Falla al leer el sensor DHT");
    return;
  }
 // Enviamos los datos al servidor.
 client.print(String("GET
/dweet/for/tunombrededispositivounico?temperatura=") + String(t) +
"&humedad=" + String(h) + " HTTP/1.1\r\n" +
               "Host: " + host + "\r\n" +
               "Connection: close\r\n\r\n");
 // Leemos la respuesta del servidor y la sacamos por el puerto serie
 while (client.available()) {
   String line = client.readStringUntil('\r');
   Serial.print(line);
 }
 Serial.println();
 Serial.println("Cerramos la conexión");
 // Repetir cada 10s
```

```
2024/05/23 05:46
```

}

```
3/5
```

```
delay(10000);
```

Si toda ha ido correctamente deberías de ver por el puerto serial algo similar a

```
{"this":"succeeded","by":"dweeting","the":"dweet","with":{"thing":"elesp8266
delc","created":"2016-08-31T22:04:33.970Z","content":{"temperatura":27,"hume
dad":48},"transaction":"dd2d251d-e6ab-4006-9cd3-168fae589158"}}
Cerramos la conexión
HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Content-Type: application/json
Content-Length: 215
Date: Wed, 31 Aug 2016 22:04:49 GMT
Connection: close
```

Visualizar gráficamente nuestros datos

Como última parte de esta práctica vamos a visualizar gráficamente las medidas de humedad y temperatura usando la plataforma https://www.freeboard.io

Lo primero es crear una cuenta y una vez creada debemos seguir estos pasos:

1. Añadir un DATASOURCE con los parámetros que pusimos en nuestro código

DATASOURCE			
A datasource for connectin	g to things at dweet.io.		
TYPE	Dweet.io		
NAME	sensorht		
THING NAME	mi nombre único de dispositivo		
KEY			
SHOW FULL PAYLOAD	NO If on, gives access to the full Dweet payload (used to obtain timestamp). If not, only the Content object is captured		
		SAVE	CANCEL

2. Pulsamos el botón Add Panel y dentro del panel pulsamos el botón + para añadir un WIDGET

WIDGET				
туре	Gauge 🗸			
TITLE	Temperatura			
VALUE	datasources["sensorht"]["temperatura"]	+ DATASOURCE	🗙 JS EDITOR	
UNITS	C			
MINIMUM				
MAXIMUM	40			
			SAVE CANCEL	
WIDGET				
TYPE	Gauge 😽			
TITLE	Humedad			
VALUE	datasources["sensorht"]["humedad"]	+ DATASOURCE	🗙 JS EDITOR	
UNITS	%			
MINIMUM				
MAXIMUM	100			
			SAVE CANCEL	

Con esto ya podemos ver gráficamente nuestro dispositivo

freeboard		DATASOUNCES			
			Last lipdated		
			22049/46	• •	
APORT [] 100					
-1 1-					+1 I+
	Temperatures				
treeboard TUT(DRIAL			EEN 💄 DAWE 🕚 CLONE	

Referencias

https://www.openhomeautomation.net/cloud-temperature-logger-esp8266/

From: http://intrusos.info/ - LCWIKI

Permanent link: http://intrusos.info/doku.php?id=electronica:esp8266:nube

Last update: 2023/01/18 14:36